Data Structures \& Algorithms for Geometry

\bullet Agenda:

- Quiz \#3
- BSP trees, part 2:
- Traversing / using BSP trees
- Advanced split-plane selection
- Optimization
- Assignment \#3 due
- Begin assignment \#4

Intersecting a Point w/Solid BSP

ϑ Operates as you would expect:

- If the point is in the positive half-space, traverse the positive child.
- If the child is a leaf, the point is outside the solid.
- If the point is in the negative half-space, traverse the negative child.
- If the child is a leaf, the point is inside the solid.

Intersecting a Point w/Solid BSP (cont.)

```
int BSP_node::test_point(const point &p) const
{
    BSP_node *n = this;
    int visit_child = 0;
    while (!n->is_leaf()) {
        const plane split = n->get_plane();
        const float dist = plane.n.dot3(p) + plane.d;
    visit_child = (dist <= EPSILON);
    n = n->child[visit_child];
}
    return (visit_child == 0)
    ? POINT_INSIDE : POINT_OUTSIDE;
}
```


Intersecting a Point w/Solid BSP (cont.)

θ What if we need to know when the point is on the boundary?

Intersecting a Point w/Solid BSP (cont.)

∂ What if we need to know when the point is on the boundary?

- If the point is within ε of the plane, traverse both subtrees.
- If both subtrees produce the same result, that is the answer.
- If each subtree produces a different result, the point is on the boundary.

Intersecting a Ray w/Solid BSP

- Obvious answer:
- Clip the ray by the split-plane.
- Send each non-empty piece down the corresponding subtree.
- The piece of the ray closest to the ray's origin that ends in solid space is the first intersection.

Intersecting a Ray w/Solid BSP

- Obvious answer:
- Clip the ray by the split-plane.
- Send each non-empty piece down the corresponding subtree.
- The piece of the ray closest to the ray's origin that ends in solid space is the first intersection.
θ What's the problem with this approach?

Intersecting a Ray w/Solid BSP

ค Obvious answer:

- Clip the ray by the split-plane.
- Send each non-empty piece down the corresponding subtree.
- The piece of the ray closest to the ray's origin that ends in solid space is the first intersection.
- What's the problem with this approach?
- Lots of repeated clipping of the same ray results in lots of accumulated floating-point error.

Intersecting a Ray w/Solid BSP (cont.)

∂ Use the parametric form of the ray:

$$
R(t)=P_{0}+t \times d
$$

ə Intersection routine takes $\mathrm{t}_{\text {min }}, \mathrm{t}_{\text {max }}, \mathrm{P}_{0}$, and d as parameters.

- Calculate $\mathrm{t}_{\text {intersect }}$.
- Repeat using $\left[\mathrm{t}_{\text {min }}, \mathrm{t}_{\text {intersecl }}\right]$ and $\left[\mathrm{t}_{\text {intersect }}, \mathrm{t}_{\text {max }}\right]$.
- If $\mathrm{t}_{\text {min }}=\mathrm{t}_{\text {inersect }}$ or $\mathrm{t}_{\text {inersect }}=\mathrm{t}_{\text {max }}$, then that portion does not contain part of the ray.

Intersecting a Polytope w/Solid BSP

○ Obvious answer:

- Test each face of the polytope against BSP.
- The face test proceeds like face insertion, but the tree is not modified.

Intersecting a Polytope w/Solid BSP

- Obvious answer:
- Test each face of the polytope against BSP.
- The face test proceeds like face insertion, but the tree is not modified.
- What's the problem with this method?

Intersecting a Polytope w/Solid BSP

- Obvious answer:
- Test each face of the polytope against BSP.
- The face test proceeds like face insertion, but the tree is not modified.
- What's the problem with this method?
- S-L-O-W
- Misses intersections of a disjoint solid completely contained within polytope

Intersecting a Polytope w/Solid BSP

- Obvious answer:
- Test each face of the polytope against BSP.
- The face test proceeds like face insertion, but the tree is not modified.
- What's the problem with this method?
- S-L-O-W
- Misses intersections of a disjoint solid completely contained within polytope
- Can solve this by converting polytop to a BSP tree and calculating the union of the two trees.

Merging BSP Trees

- Merging two BSP trees can be used to perform numerous operations on the trees:
- Union
- Intersection
- Difference
- etc.

Merging BSP Trees (cont.)

- Conceptually very simple recursive operation:
- If T_{1} or T_{2} is a leaf, merge the leaf into the tree.
- Insert each of the polygons in the leaf in the other tree.
- Otherwise, partition T_{2} by T_{1} 's split-plane
- Merge the portion of T_{2} in T_{1} 's negative half-space to T_{1} 's negative child
- Merge the portion of T_{2} in T_{1} 's positive half-space to T_{1} 's positive child
Э Fundamental operation is splitting a tree.

Splititing a BSP Tree

\ominus Want to split a BSP tree, T, by a split-plane, X.

- At any time X will have a set of zero or more edges defined in the plane.
- Each edge represents a previous intersection with a plane of T.
- Initially X is an infinite plane.
- Intersecting with the root, A, of X splits in half.
- Intersecting with the positive node from A, D, splits it again.
\rightleftharpoons Sound familiar?

Spliting a BSP Tree (cont.)

\rightleftharpoons Track a $(k-1)$ d BSP tree for X.

- This enables determining that subspaces of $T \mathrm{~s}$ nodes can be discarded.
- Only one subspace of B needs to be considered.
\quad Real work begins when a leaf of T is reached.
- X becomes a new split-plane, and contents of the leaf are resplit by X.
- Contents of E and C are divided

17-November-2007

CSG Operation Using the Merge

\quad After merge complete, each leaf is tagged as having come from either T_{1} or T_{2} or both.

- Perform appropriate logical operation on the leaves.
- $T_{1} \wedge T_{2}$: delete leaf nodes that come from only one of the original trees.
- $T_{1}-T_{2}$: delete leaf nodes from T_{2} or from both.
- $T_{1} \neq T_{2}$: delete leaf nodes from both.
- etc.

References

http://www.mcs.csuhayward.edu/~tebo/papers/siggraph90.pdf

Smarter Split-plane Selection

〇 Level 0 heuristics:

- Pick random split-plane, hope for the best.
- Level 1 heuristics:
- Least-crossed - pick plane that causes least splits
- Most-crossed - pick plane most likely to repeatedly split later
- Balancing cuts - pick plane that evenly divides number of polygons to child nodes

Level 2: Conflict Minimization

ə Pick the split-plane that produces the least total splits at this iteration and the next.
\rightleftharpoons For each potential split-plane, P:

- Count the number of planes in the positive space of P that intersect planes in the negative space of P (and vice-versa).
- Subtract a weighing of the number of planes split by P.

Pick the plane with the highest score.

Level 3: Conflict Neutralization

〇For each polygon, track 3 lists:

- Depth 1: Set of planes that split it.
- Depth 2: Set of planes that block each of the splitters.
- Depth 3: Set of planes that block each of the blockers from blocking each of the splitters.
- Plane's score: -1 each time it appears at depth 1 or $3,+1$ each time it appears at depth 2.
- Pick the plane with the highest score.

References

http://mysite.wanadoo-members.co.uk/dradamjames/PHD/download.htm|\#CN

- This is the Conflict Neutralization paper.
http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf
- This is the Conflict Minimization paper.

Memory Usage

\rightleftharpoons Obvious node structure is 28 bytes:

struct bsp_node \{
plane split_plane;
bool leaf;
union \{
bsp_node *children[2]; struct \{ polygon **p; unsigned num_polygons; \} brushes;
\} data;
\};

Tree Structure Observations

© Common tree structures:

- Top portion of tree will typically be complete.
- May be sections of linearized split planes.
$\boldsymbol{\theta}$ How do we take advantage of this?

Compacted Complete Subtree

ϑ Represent the complete subtree by the splitplanes of the inner nodes and the pointers to the outgoing leaves.
struct bsp_complete_node \{
unsigned depth; /* Depth of subtree. */ plane *split; /* (2^depth)-1 split-planes */ bsp_node **children; /* 2^depth children */

$$
\text { \}; }
$$

ค Reduction in storage: $28 n$ bytes $\rightarrow 12+20 n$ bytes

- Saves 20% on 15 -node subtree
- Saves 28% on 31 -node subtree!

Fused Linear Nodes

- Pack all linear nodes into a single node.
struct bsp_linear_node \{
plane *split_planes;
unsigned char num_split_planes;
bool leaf;
union \{ /* ... */ \} data;
\};
- Reduction in storage: 28 n bytes $\rightarrow 16+16 \mathrm{n}$ bytes
- Saves 24\% on 3-node group

Special-case Fused Nodes

- Handle the case of 3 linear nodes apart from the general case.
- Depending on the data, may not need general case
struct bsp_linear3_node \{
plane split_planes[3];
bool leaf;
union $\{$ /* ... */ \} data;
\};
ค Reduction in storage: 84 bytes $\rightarrow 60$ bytes
- Saves 29% on 3 -node group

Subtree Nodes

- Represent small, fixed size subtree in one node
struct bsp_subtree_node \{
plane split_panes[3];
bool leaf[2];
union \{ /* ... */ \} data[2];
\};
- Only need child data for the two leaves.
$\operatorname{Reduction~in~storage:~} 84$ bytes $\rightarrow 68$ bytes
- Saves 20% on 3 -node group

References

http://www.cgg.cvut.cz/~havran/ARTICLES/compugr97.pdf

Next week...

\ominus No class next Saturday (11/24)!

- Next meeting is 12/1.
- Optimization
- Measuring code performance
- Memory hierarchy in real computers
- Tree node packing to optimize for CPU caches
- Structure of arrays vs. array of structures
- Avoiding re-calculations
- Assignment \#4 due

Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM or the Art Institute of Portland.
○ OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.
- Khronos and OpenGL ES are trademarks of the Khronos Group.
- Other company, product, and service names may be trademarks or service marks of others.

