
17-November-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Quiz #3

● BSP trees, part 2:
• Traversing / using BSP trees
• Advanced split-plane selection
• Optimization

● Assignment #3 due

● Begin assignment #4

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP
Operates as you would expect:

● If the point is in the positive half-space, traverse the
positive child.
• If the child is a leaf, the point is outside the solid.

● If the point is in the negative half-space, traverse
the negative child.
• If the child is a leaf, the point is inside the solid.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP (cont.)
int BSP_node::test_point(const point &p) const
{
 BSP_node *n = this;
 int visit_child = 0;

 while (!n->is_leaf()) {
 const plane split = n->get_plane();
 const float dist = plane.n.dot3(p) + plane.d;

 visit_child = (dist <= EPSILON);
 n = n->child[visit_child];
 }

 return (visit_child == 0)
 ? POINT_INSIDE : POINT_OUTSIDE;
}

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP (cont.)
What if we need to know when the point is on

the boundary?

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP (cont.)
What if we need to know when the point is on

the boundary?
● If the point is within  of the plane, traverse both

subtrees.

● If both subtrees produce the same result, that is the
answer.

● If each subtree produces a different result, the point
is on the boundary.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP
Obvious answer:

● Clip the ray by the split-plane.

● Send each non-empty piece down the
corresponding subtree.

● The piece of the ray closest to the ray's origin that
ends in solid space is the first intersection.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP
Obvious answer:

● Clip the ray by the split-plane.

● Send each non-empty piece down the
corresponding subtree.

● The piece of the ray closest to the ray's origin that
ends in solid space is the first intersection.

What's the problem with this approach?

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP
Obvious answer:

● Clip the ray by the split-plane.

● Send each non-empty piece down the
corresponding subtree.

● The piece of the ray closest to the ray's origin that
ends in solid space is the first intersection.

What's the problem with this approach?
● Lots of repeated clipping of the same ray results in

lots of accumulated floating-point error.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP (cont.)
Use the parametric form of the ray:

R(t) = P
0
 + t  d

 Intersection routine takes t
min

, t
max

, P
0
, and d as

parameters.

● Calculate t
intersect

.

● Repeat using [t
min

, t
intersect

] and [t
intersect

, t
max

].

• If t
min

 = t
intersect

 or t
intersect

 = t
max

, then that portion does not

contain part of the ray.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

What's the problem with this method?

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

What's the problem with this method?
● S-L-O-W

● Misses intersections of a disjoint solid completely
contained within polytope

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

What's the problem with this method?
● S-L-O-W

● Misses intersections of a disjoint solid completely
contained within polytope
• Can solve this by converting polytop to a BSP tree and

calculating the union of the two trees.

17-November-2007 © Copyright Ian D. Romanick 2007

Merging BSP Trees
Merging two BSP trees can be used to perform

numerous operations on the trees:
● Union

● Intersection

● Difference

● etc.

17-November-2007 © Copyright Ian D. Romanick 2007

Merging BSP Trees (cont.)
Conceptually very simple recursive operation:

● If T
1
 or T

2
 is a leaf, merge the leaf into the tree.

• Insert each of the polygons in the leaf in the other tree.

● Otherwise, partition T
2
 by T

1
's split-plane

● Merge the portion of T
2
 in T

1
's negative half-space

to T
1
's negative child

● Merge the portion of T
2
 in T

1
's positive half-space to

T
1
's positive child

Fundamental operation is splitting a tree.

17-November-2007 © Copyright Ian D. Romanick 2007

Splitting a BSP Tree
Want to split a BSP tree, T, by a split-plane, X.

● At any time X will have a set of zero or more edges
defined in the plane.

● Each edge represents a previous intersection with a
plane of T.
• Initially X is an infinite plane.
• Intersecting with the root, A, of

X splits in half.
• Intersecting with the positive

node from A, D, splits it again.

Sound familiar?

17-November-2007 © Copyright Ian D. Romanick 2007

Splitting a BSP Tree (cont.)
Track a (k-1)d BSP tree for X.

● This enables determining that subspaces of T's
nodes can be discarded.

● Only one subspace of B needs to be considered.

Real work begins when a leaf
of T is reached.
● X becomes a new split-plane,

and contents of the leaf are re-
split by X.
• Contents of E and C are divided

by live portions of X.

17-November-2007 © Copyright Ian D. Romanick 2007

CSG Operation Using the Merge
After merge complete, each leaf is tagged as

having come from either T
1
 or T

2
 or both.

Perform appropriate logical operation on the
leaves.

● T
1
 ∧ T

2
: delete leaf nodes that come from only one

of the original trees.

● T
1
 ­ T

2
: delete leaf nodes from T

2
 or from both.

● T
1
 ≠ T

2
: delete leaf nodes from both.

● etc.

17-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.mcs.csuhayward.edu/~tebo/papers/siggraph90.pdf

http://www.mcs.csuhayward.edu/~tebo/papers/siggraph90.pdf

17-November-2007 © Copyright Ian D. Romanick 2007

Smarter Split­plane Selection
Level 0 heuristics:

● Pick random split-plane, hope for the best.

Level 1 heuristics:
● Least-crossed – pick plane that causes least splits

● Most-crossed – pick plane most likely to repeatedly
split later

● Balancing cuts – pick plane that evenly divides
number of polygons to child nodes

17-November-2007 © Copyright Ian D. Romanick 2007

Level 2: Conflict Minimization
Pick the split-plane that produces the least total

splits at this iteration and the next.

For each potential split-plane, P:
● Count the number of planes in the positive space of

P that intersect planes in the negative space of P
(and vice-versa).

● Subtract a weighing of the number of planes split by
P.

Pick the plane with the highest score.

17-November-2007 © Copyright Ian D. Romanick 2007

Level 3: Conflict Neutralization
For each polygon, track 3 lists:

● Depth 1: Set of planes that split it.

● Depth 2: Set of planes that block each of the
splitters.

● Depth 3: Set of planes that block each of the
blockers from blocking each of the splitters.

Plane's score: -1 each time it appears at depth
1 or 3, +1 each time it appears at depth 2.
● Pick the plane with the highest score.

17-November-2007 © Copyright Ian D. Romanick 2007

References
http://mysite.wanadoo-members.co.uk/dradamjames/PHD/download.html#CN

● This is the Conflict Neutralization paper.
http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf

● This is the Conflict Minimization paper.

http://mysite.wanadoo-members.co.uk/dradamjames/PHD/download.html#CN
http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf

17-November-2007 © Copyright Ian D. Romanick 2007

Memory Usage
Obvious node structure is 28 bytes:
struct bsp_node {
 plane split_plane;
 bool leaf;
 union {
 bsp_node *children[2];
 struct {
 polygon **p;
 unsigned num_polygons;
 } brushes;
 } data;
};

17-November-2007 © Copyright Ian D. Romanick 2007

Tree Structure Observations
Common tree

structures:
● Top portion of tree

will typically be
complete.

● May be sections of
linearized split
planes.

How do we take
advantage of this?

17-November-2007 © Copyright Ian D. Romanick 2007

Compacted Complete Subtree
Represent the complete subtree by the split-

planes of the inner nodes and the pointers to
the outgoing leaves.

struct bsp_complete_node {
 unsigned depth; /* Depth of subtree. */
 plane *split; /* (2^depth)-1 split-planes */
 bsp_node **children; /* 2^depth children */
};

Reduction in storage: 28n bytes → 12+20n bytes

● Saves 20% on 15-node subtree

● Saves 28% on 31-node subtree!

17-November-2007 © Copyright Ian D. Romanick 2007

Fused Linear Nodes
Pack all linear nodes into a single node.
struct bsp_linear_node {
 plane *split_planes;
 unsigned char num_split_planes;
 bool leaf;
 union { /* ... */ } data;
};

Reduction in storage: 28n bytes → 16+16n bytes

● Saves 24% on 3-node group

17-November-2007 © Copyright Ian D. Romanick 2007

Special­case Fused Nodes
Handle the case of 3 linear nodes apart from

the general case.
● Depending on the data, may not need general case

struct bsp_linear3_node {
 plane split_planes[3];
 bool leaf;
 union { /* ... */ } data;
};

Reduction in storage: 84 bytes → 60 bytes

● Saves 29% on 3-node group

17-November-2007 © Copyright Ian D. Romanick 2007

Subtree Nodes
Represent small, fixed size subtree in one node
struct bsp_subtree_node {
 plane split_panes[3];
 bool leaf[2];
 union { /* ... */ } data[2];
};

Only need child data for the two leaves.

Reduction in storage: 84 bytes → 68 bytes

● Saves 20% on 3-node group

17-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.cgg.cvut.cz/~havran/ARTICLES/compugr97.pdf

http://www.cgg.cvut.cz/~havran/ARTICLES/compugr97.pdf

17-November-2007 © Copyright Ian D. Romanick 2007

Next week...
No class next Saturday (11/24)!

● Next meeting is 12/1.

Optimization
● Measuring code performance

● Memory hierarchy in real computers
• Tree node packing to optimize for CPU caches
• Structure of arrays vs. array of structures

● Avoiding re-calculations

Assignment #4 due

17-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

