
17-November-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Quiz #3

● BSP trees, part 2:
• Traversing / using BSP trees
• Advanced split-plane selection
• Optimization

● Assignment #3 due

● Begin assignment #4

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP
Operates as you would expect:

● If the point is in the positive half-space, traverse the
positive child.
• If the child is a leaf, the point is outside the solid.

● If the point is in the negative half-space, traverse
the negative child.
• If the child is a leaf, the point is inside the solid.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP (cont.)
int BSP_node::test_point(const point &p) const
{
 BSP_node *n = this;
 int visit_child = 0;

 while (!n->is_leaf()) {
 const plane split = n->get_plane();
 const float dist = plane.n.dot3(p) + plane.d;

 visit_child = (dist <= EPSILON);
 n = n->child[visit_child];
 }

 return (visit_child == 0)
 ? POINT_INSIDE : POINT_OUTSIDE;
}

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP (cont.)
What if we need to know when the point is on

the boundary?

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Point w/Solid BSP (cont.)
What if we need to know when the point is on

the boundary?
● If the point is within of the plane, traverse both

subtrees.

● If both subtrees produce the same result, that is the
answer.

● If each subtree produces a different result, the point
is on the boundary.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP
Obvious answer:

● Clip the ray by the split-plane.

● Send each non-empty piece down the
corresponding subtree.

● The piece of the ray closest to the ray's origin that
ends in solid space is the first intersection.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP
Obvious answer:

● Clip the ray by the split-plane.

● Send each non-empty piece down the
corresponding subtree.

● The piece of the ray closest to the ray's origin that
ends in solid space is the first intersection.

What's the problem with this approach?

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP
Obvious answer:

● Clip the ray by the split-plane.

● Send each non-empty piece down the
corresponding subtree.

● The piece of the ray closest to the ray's origin that
ends in solid space is the first intersection.

What's the problem with this approach?
● Lots of repeated clipping of the same ray results in

lots of accumulated floating-point error.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Ray w/Solid BSP (cont.)
Use the parametric form of the ray:

R(t) = P
0
 + t d

 Intersection routine takes t
min

, t
max

, P
0
, and d as

parameters.

● Calculate t
intersect

.

● Repeat using [t
min

, t
intersect

] and [t
intersect

, t
max

].

• If t
min

 = t
intersect

 or t
intersect

 = t
max

, then that portion does not

contain part of the ray.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

What's the problem with this method?

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

What's the problem with this method?
● S-L-O-W

● Misses intersections of a disjoint solid completely
contained within polytope

17-November-2007 © Copyright Ian D. Romanick 2007

Intersecting a Polytope w/Solid BSP
Obvious answer:

● Test each face of the polytope against BSP.

● The face test proceeds like face insertion, but the
tree is not modified.

What's the problem with this method?
● S-L-O-W

● Misses intersections of a disjoint solid completely
contained within polytope
• Can solve this by converting polytop to a BSP tree and

calculating the union of the two trees.

17-November-2007 © Copyright Ian D. Romanick 2007

Merging BSP Trees
Merging two BSP trees can be used to perform

numerous operations on the trees:
● Union

● Intersection

● Difference

● etc.

17-November-2007 © Copyright Ian D. Romanick 2007

Merging BSP Trees (cont.)
Conceptually very simple recursive operation:

● If T
1
 or T

2
 is a leaf, merge the leaf into the tree.

• Insert each of the polygons in the leaf in the other tree.

● Otherwise, partition T
2
 by T

1
's split-plane

● Merge the portion of T
2
 in T

1
's negative half-space

to T
1
's negative child

● Merge the portion of T
2
 in T

1
's positive half-space to

T
1
's positive child

Fundamental operation is splitting a tree.

17-November-2007 © Copyright Ian D. Romanick 2007

Splitting a BSP Tree
Want to split a BSP tree, T, by a split-plane, X.

● At any time X will have a set of zero or more edges
defined in the plane.

● Each edge represents a previous intersection with a
plane of T.
• Initially X is an infinite plane.
• Intersecting with the root, A, of

X splits in half.
• Intersecting with the positive

node from A, D, splits it again.

Sound familiar?

17-November-2007 © Copyright Ian D. Romanick 2007

Splitting a BSP Tree (cont.)
Track a (k-1)d BSP tree for X.

● This enables determining that subspaces of T's
nodes can be discarded.

● Only one subspace of B needs to be considered.

Real work begins when a leaf
of T is reached.
● X becomes a new split-plane,

and contents of the leaf are re-
split by X.
• Contents of E and C are divided

by live portions of X.

17-November-2007 © Copyright Ian D. Romanick 2007

CSG Operation Using the Merge
After merge complete, each leaf is tagged as

having come from either T
1
 or T

2
 or both.

Perform appropriate logical operation on the
leaves.

● T
1
 ∧ T

2
: delete leaf nodes that come from only one

of the original trees.

● T
1
 T

2
: delete leaf nodes from T

2
 or from both.

● T
1
 ≠ T

2
: delete leaf nodes from both.

● etc.

17-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.mcs.csuhayward.edu/~tebo/papers/siggraph90.pdf

http://www.mcs.csuhayward.edu/~tebo/papers/siggraph90.pdf

17-November-2007 © Copyright Ian D. Romanick 2007

Smarter Splitplane Selection
Level 0 heuristics:

● Pick random split-plane, hope for the best.

Level 1 heuristics:
● Least-crossed – pick plane that causes least splits

● Most-crossed – pick plane most likely to repeatedly
split later

● Balancing cuts – pick plane that evenly divides
number of polygons to child nodes

17-November-2007 © Copyright Ian D. Romanick 2007

Level 2: Conflict Minimization
Pick the split-plane that produces the least total

splits at this iteration and the next.

For each potential split-plane, P:
● Count the number of planes in the positive space of

P that intersect planes in the negative space of P
(and vice-versa).

● Subtract a weighing of the number of planes split by
P.

Pick the plane with the highest score.

17-November-2007 © Copyright Ian D. Romanick 2007

Level 3: Conflict Neutralization
For each polygon, track 3 lists:

● Depth 1: Set of planes that split it.

● Depth 2: Set of planes that block each of the
splitters.

● Depth 3: Set of planes that block each of the
blockers from blocking each of the splitters.

Plane's score: -1 each time it appears at depth
1 or 3, +1 each time it appears at depth 2.
● Pick the plane with the highest score.

17-November-2007 © Copyright Ian D. Romanick 2007

References
http://mysite.wanadoo-members.co.uk/dradamjames/PHD/download.html#CN

● This is the Conflict Neutralization paper.
http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf

● This is the Conflict Minimization paper.

http://mysite.wanadoo-members.co.uk/dradamjames/PHD/download.html#CN
http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf

17-November-2007 © Copyright Ian D. Romanick 2007

Memory Usage
Obvious node structure is 28 bytes:
struct bsp_node {
 plane split_plane;
 bool leaf;
 union {
 bsp_node *children[2];
 struct {
 polygon **p;
 unsigned num_polygons;
 } brushes;
 } data;
};

17-November-2007 © Copyright Ian D. Romanick 2007

Tree Structure Observations
Common tree

structures:
● Top portion of tree

will typically be
complete.

● May be sections of
linearized split
planes.

How do we take
advantage of this?

17-November-2007 © Copyright Ian D. Romanick 2007

Compacted Complete Subtree
Represent the complete subtree by the split-

planes of the inner nodes and the pointers to
the outgoing leaves.

struct bsp_complete_node {
 unsigned depth; /* Depth of subtree. */
 plane *split; /* (2^depth)-1 split-planes */
 bsp_node **children; /* 2^depth children */
};

Reduction in storage: 28n bytes → 12+20n bytes

● Saves 20% on 15-node subtree

● Saves 28% on 31-node subtree!

17-November-2007 © Copyright Ian D. Romanick 2007

Fused Linear Nodes
Pack all linear nodes into a single node.
struct bsp_linear_node {
 plane *split_planes;
 unsigned char num_split_planes;
 bool leaf;
 union { /* ... */ } data;
};

Reduction in storage: 28n bytes → 16+16n bytes

● Saves 24% on 3-node group

17-November-2007 © Copyright Ian D. Romanick 2007

Specialcase Fused Nodes
Handle the case of 3 linear nodes apart from

the general case.
● Depending on the data, may not need general case

struct bsp_linear3_node {
 plane split_planes[3];
 bool leaf;
 union { /* ... */ } data;
};

Reduction in storage: 84 bytes → 60 bytes

● Saves 29% on 3-node group

17-November-2007 © Copyright Ian D. Romanick 2007

Subtree Nodes
Represent small, fixed size subtree in one node
struct bsp_subtree_node {
 plane split_panes[3];
 bool leaf[2];
 union { /* ... */ } data[2];
};

Only need child data for the two leaves.

Reduction in storage: 84 bytes → 68 bytes

● Saves 20% on 3-node group

17-November-2007 © Copyright Ian D. Romanick 2007

References
http://www.cgg.cvut.cz/~havran/ARTICLES/compugr97.pdf

http://www.cgg.cvut.cz/~havran/ARTICLES/compugr97.pdf

17-November-2007 © Copyright Ian D. Romanick 2007

Next week...
No class next Saturday (11/24)!

● Next meeting is 12/1.

Optimization
● Measuring code performance

● Memory hierarchy in real computers
• Tree node packing to optimize for CPU caches
• Structure of arrays vs. array of structures

● Avoiding re-calculations

Assignment #4 due

17-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

